# Infrared and Raman spectra of binary tellurite glasses containing boron and indium oxides 

QIU JIAN RONG, AKIYOSHI OSAKA, TOKURO NANBA, JUN TAKADA, YOSHINARI MIURA<br>Department of Applied Chemistry, Faculty of Engineering, Okayama University 3-3-1, Tsushima Naka, Okayama-shi, 700 Japan


#### Abstract

The constitution of glasses in the systems $\mathrm{M}_{2} \mathrm{O}_{3}-\mathrm{TeO}_{2}$ ( $\mathrm{M}=\mathrm{B}$ and In ) was investigated by Raman and infrared spectroscopy. From the relation between the $\mathrm{M}_{2} \mathrm{O}_{3}$ content and the intensity ratios of the deconvoluted Raman peaks $/(720) / /(665)$ and $/(780) / /(665)$, it was concluded that $\mathrm{In}_{2} \mathrm{O}_{3}$ behaves as a network modifier to yield $\mathrm{TeO}_{3}^{-}$units and that discrete $\mathrm{BO}_{3}$ and $\mathrm{BO}_{4}$ units construct a network of glasses containing boron oxide. A structural model for those glasses was derived which involves three-coordinated oxygen atoms and $\mathrm{TeO}_{4}$ units of an intermediate configuration, $\mathrm{O}_{3} \mathrm{Te}^{\delta+} \ldots \mathrm{O}^{\delta-}$.


## 1. Introduction

Although tellurium dioxide is hardly vitrified with a conventional melt-quenching technique [1], glasses with a wide range of composition are obtained [2-5] when it is combined with mono- or multi-valent metal oxides. $\mathrm{TeO}_{2}$-based multi-component glasses have several interesting properties such as low melting temperatures, high refractive indices and large third-order non-linear susceptibility [6]. A tellurite network basically consists of $\mathrm{TeO}_{4}$ trigonal bipyramid (TBP) units and $\mathrm{TeO}_{3}$ trigonal pyramid (TP) units [2, 4], each of which has a lone pair of electrons [2,7], while the constitution of binary glasses depends on the second metal oxides. Mochida et al. [2] reported that TBP units were converted to TP ones on addition of alkali and alkaline earth oxides. Suzuki [8] obtained similar results from a neutron scattering study on barium and sodium tellurite glasses. He proposed a mechanism (Equations 1 and 2) of the formation of the TP units:

$$
\begin{align*}
& 3 \mathrm{TeO}_{4 / 2}+\mathrm{O}^{2-} \rightarrow \mathrm{O}_{2 / 2} \mathrm{Te}-\mathrm{O}+2 \mathrm{TeO}_{3 / 2} \mathrm{O}^{-}  \tag{1}\\
& \mathrm{O}_{2 / 2} \mathrm{Te} \mathrm{O}+2 \mathrm{TeO}_{3 / 2} \mathrm{O}^{-}+2 \mathrm{O}^{2-} \rightarrow 3 \mathrm{TeO}_{3}^{2-} \tag{2}
\end{align*}
$$

where $\mathrm{O}_{1 / 2}$ represents a bridging oxygen. These two reactions proceed as the content of a network modifying oxide increases until all the oxygen atoms of the TBP units become non-bridging (Equation 3).

$$
\begin{equation*}
\mathrm{TeO}_{4 / 2}+\mathrm{O}^{2-} \rightarrow \mathrm{TeO}_{3}^{2-} \tag{3}
\end{equation*}
$$

The three oxygens in the $\mathrm{TeO}_{3}^{2-}$ units are equivalent because of resonance. Yoko et al. [3] proposed a similar mechanism where they assumed other TP units, $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O})-\mathrm{O}^{-}$. Dimitriev and co-workers proposed the change from TBP to TP for the tellurite glasses containing $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{MoO}_{3}$ and $\mathrm{Bi}_{2} \mathrm{O}_{3}$ as well as $\mathrm{CuO}[9,10]$.

For the glasses in the system of $x \mathrm{~B}_{2} \mathrm{O}_{3} \cdot(100$ $-x) \mathrm{TeO}_{2}$, Göring et al. [11] measured $\mathrm{B}^{11}-\mathrm{NMR}$ spectra, and reported that the fraction $\left(\mathrm{N}_{4 \mathrm{~B}}\right)$ of fourcoordinated boron atoms decreased from 0.56 to 0.43 as $x$ increased from 20 to $25 \mathrm{~mol} \%$. They postulated formation of $\mathrm{TeO}_{3}^{+}$units to compensate a negative charge on a $\mathrm{BO}_{4}$ unit. However, no crystals containing $\mathrm{TeO}_{3}^{+}$units have been found nor has valid experimental evidence which indicates the formation of the $\mathrm{TeO}_{3}^{+}$units been reported. Moreover, it is not yet clear whether $\mathrm{BO}_{3}$ and $\mathrm{BO}_{4}$ units form any borate groups. Thus, despite these studies, the structure of boron-oxide-tellurium-oxide glasses has not thoroughly been understood. We hence intended to investigate the constitution of those glasses. The present study primarily concerns their infrared and Raman spectra. Incidentally, Kaneko [12] suggested that of IIIb family elements In plays the role of an intermediate oxide in silicate glasses. Thus it is worth studying the role of $\mathrm{In}_{2} \mathrm{O}_{3}$ in tellurite glasses, and systematic comparison between the two systems will help understand the behaviour of both B and Te atoms in boron-oxide-tellurium-oxide glasses. Moreover, the Raman spectra of lithium tellurite and borate glasses will be of great help as a reference since their structural change with composition has been fairly well studied $[2,13]$.

## 2. Experimental procedure

Glasses of the compositions $x \mathrm{Li}_{2} \mathrm{O} \cdot(1-x) \mathrm{TeO}_{2}$, $x \mathrm{~B}_{2} \mathrm{O}_{3} \cdot(1-x) \mathrm{TeO}_{2}$ and $x \mathrm{In}_{2} \mathrm{O}_{3} \cdot(1-x) \mathrm{TeO}_{2}(x$ in mol fraction) were prepared. They are hereafter denoted as lithium glasses, boron glasses and indium glasses, respectively. Appropriate mixtures of reagent grade $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}, \mathrm{In}_{2} \mathrm{O}_{3}$ and $\mathrm{TeO}_{2}$ were melted in platinum crucibles at $700-800^{\circ} \mathrm{C}$ for 20 min in air. The melts were quenched between a sheet of steel plate
and a piece of iron. Clear glasses could only be obtained in the region $0.15 \leqslant x \leqslant 0.35$ for the lithium system, $0.15 \leqslant x \leqslant 0.30$ for the boron one, and $0.05 \leqslant x \leqslant 0.15$ for the indium one. The X-ray amorphous samples were then annealed for 30 min near $T_{g}$ (obtained beforehand from their differential scanning calorimetry (DSC) traces) and served for measuring Raman and infrared spectra. $\mathrm{Li}_{2} \mathrm{TeO}_{3}$ crystal was prepared by cooling the corresponding melt to room temperature in an electric furnace whose power was turned off after the completion of melting. The obtained sample was identified as $\mathrm{Li}_{2} \mathrm{TeO}_{3}$ (JCPDS 19-728) with an X-ray diffraction measurement. IR spectra were taken with a KBr pellet method by using a Hitachi IR 270-30 spectrometer. Raman spectra were measured with $\mathrm{Ar}^{+}$laser ( 514.5 nm ) by using a JASCO NR-1000 Raman spectrophotometer.

## 3. Results

3.1. Raman spectra of lithium tellurite glasses, $\mathrm{Li}_{2} \mathrm{TeO}_{3}$ crystai and $\mathrm{Li}_{2} \mathrm{O} \cdot 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ glass
The Raman spectrum in Fig. 1a for $\mathrm{Li}_{2} \mathrm{TeO}_{3}$ crystal indicates that the $\mathrm{TeO}_{3}^{2-}$ units yield two strong peaks at 720 and $790 \mathrm{~cm}^{-1}$. The spectrum in Fig. 1b for $\mathrm{Li}_{2} \mathrm{O} \cdot 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ glass shows very sharp peaks at 772 and $803 \mathrm{~cm}^{-1}$, which corresponds to a borate ring with $\mathrm{BO}_{4}$ units and the boroxol group, respectively [13]. The full width at half maximum (FWHM) is $20 \mathrm{~cm}^{-1}$ for these two borate bands. Fig. 2 shows the Raman spectra of the lithium glasses of composition $x \mathrm{Li}_{2} \mathrm{O}$. $(1-x) \mathrm{TeO}_{2}$. The relative intensity of the $455 \mathrm{~cm}^{-1}$ and $665 \mathrm{~cm}^{-1}$ peaks decreases with $x$, while a shoulder peak at about $730 \mathrm{~cm}^{-1}$ for $x=0.15$ grows accompanied by a blue shift up to $760 \mathrm{~cm}^{-1}$ for $x=0.3$.


Figure 1 Raman spectra of $\mathrm{Li}_{2} \mathrm{TeO}_{3}$ crystal (a) and $\mathrm{Li}_{2} \cdot 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ glass (b).


Figure 2 Raman spectra of $x \mathrm{Li}_{2} \mathrm{O} \cdot(1-x) \mathrm{TeO}_{2}$ glasses.

### 3.2. Spectra of the binary tellurite glasses containing trivalent cations

Fig. 3a represents the infrared spectra for the boron glasses of composition $x \mathrm{~B}_{2} \mathrm{O}_{3} \cdot(1-x) \mathrm{TeO}_{2}$, indicating a few peaks at $635,930,1240$ and $1350 \mathrm{~cm}^{-1}$. The $635 \mathrm{~cm}^{-1}$ peak has been assigned to TBP units [2, 4], and its relative intensity decreases with $x$. The peak at $930 \mathrm{~cm}^{-1}$ is assigned to $\mathrm{BO}_{4}$ units while those at 1240 and $1350 \mathrm{~cm}^{-1}$ are assigned to $\mathrm{BO}_{3}$ ones [13, 14]. The $930 \mathrm{~cm}^{-1}$ band intensity decreases with $x$ relative to the $1350 \mathrm{~cm}^{-1}$ and $1240 \mathrm{~cm}^{-1}$ bands. The Raman spectra of the boron glasses in Fig. 3b have two strong peaks at $455 \mathrm{~cm}^{-1}$ and $665 \mathrm{~cm}^{-1}$ and a shoulder at about $745 \mathrm{~cm}^{-1}$ as well as a very weak shoulder peak at $850 \mathrm{~cm}^{-1}$. The $665 \mathrm{~cm}^{-1}$ Raman band corresponds to the $635 \mathrm{~cm}^{-1}$ infrared peak. The spectral profile is quite similar to that of $\mathrm{TeO}_{2}$ glass reported by Sekiya et al. [15].

Fig. 4 shows Raman spectra for the indium glasses of composition $x \operatorname{In}_{2} \mathrm{O}_{3} \cdot(1-x) \mathrm{TeO}_{2}$. The intensity of the $665 \mathrm{~cm}^{-1}$ peak decreases with $x$, while a peak at about $730 \mathrm{~cm}^{-1}$ grows with a blue shift up to about $750 \mathrm{~cm}^{-1}$. The spectral profile in the range from 600 to $800 \mathrm{~cm}^{-1}$ is similar to that of the lithium glasses, but it is quite different from that of the boron glasses though both In and B are of the IIIb family in the periodic table.

## 4. Discussion

### 4.1. Configuration of $\mathrm{TeO}_{n}$ polyhedra

It is characteristic of Te to yield $n+1$ or $n+2$ configurations which have one or two bonds longer than 0.23 nm in addition to $n$ ordinary bonds of $0.18-0.22 \mathrm{~nm}$ in length [2,4]. Wider distribution of


Figure 3 (a) Infrared and (b) Raman spectra of $x \mathrm{~B}_{2} \mathrm{O}_{3}$ $(1-x) \mathrm{TeO}_{2}$ glasses.
the bond length is indicated for $\mathrm{TeO}_{n}$ polyhedra in crystals, and continuous variation of the fourth $\mathrm{Te}-\mathrm{O}$ length has been noticed from about 0.2 nm in pure TBP units to about 0.3 nm in pure threefold coordination [16]. Such behaviour is explained in terms of a weak tendency of Te atoms towards threefold coordination [16]. Since we will discuss the constitution of glasses constructed by $\mathrm{TeO}_{n}$ polyhedra, it is necessary to define what are the TP and the TBP units with respect to configuration and bond length. $\mathrm{TeO}_{3}^{2-}$ units have shorter bonds (about 0.188 nm ) [17], and $\mathrm{O}_{2 / 2} \mathrm{Te} \mathrm{O}$ and $\mathrm{O}_{1 / 2} \mathrm{Te}(=\mathrm{O}) \mathrm{O}^{-}$units $[3,8]$ are likely to have similar bond lengths. $\mathrm{TeO}_{4}$ units have longer bonds, though the length depends on crystals. For instance, the $\mathrm{Te}-\mathrm{O}$ bonds in tellurite are 0.188 , $0.193,0.207$ and 0.219 nm long [18] while those in


Figure 4 Raman spectra of $x \mathrm{In}_{2} \mathrm{O}_{3} \cdot(1-x) \mathrm{Te} \mathrm{O}_{2}$ glasses.
paratellurite are 0.190 and 0.208 nm long [19]. Thus one may assume that tellurite consists of the units of a $\mathrm{TeO}_{3+1}$ configuration; Suzuki [8] proposed such $\mathrm{TeO}_{3+1}$ units are the constituent ones of $\mathrm{TeO}_{2}$ glass where three oxygen atoms are at 0.195 nm and the fourth one at 0.218 nm . However, in the present study, we take the bonds longer than 0.23 nm as the extra $(+1$ or +2$)$ ones to involve the constituent polyhedra of paratellurite into the category of TBP units. Hence $\mathrm{TeO}_{2}$ glass is referred to as being composed of $\mathrm{TeO}_{4 / 2}$ (TBP) units. When the fourth oxygen is getting far apart, the unit is represented as $\mathrm{O}_{3 / 2} \mathrm{Te}^{\delta+} \ldots . \mathrm{O}_{1 / 2}^{\delta-}$ like a $\mathrm{TeCl}_{3}^{+} \ldots \mathrm{Cl}^{-}$unit in $\mathrm{TeCl}_{4}$ crystal [20]. It becomes a $\mathrm{TeO}_{3 / 2}^{+}$unit in a limiting case where the fourth oxygen lies about 0.3 nm far from the Te atom.

### 4.2. Ratios of Raman band intensities <br> $/(720) / /(665)$ and $/(780) / /(665)$

Relative intensities of the Raman bands assigned to TBP and TP units stand for the fractions of these two units in glass. For the qualitative analysis of the intensity ratio, the Raman spectra in the range $350-1000 \mathrm{~cm}^{-1}$ have been deconvoluted into component bands after Mysen et al. [21]. A typical example is demonstrated in Fig. 5 for (a) $\mathrm{Li}_{2} \mathrm{O} \cdot 4 \mathrm{TeO}_{2}$ glass and (b) $\mathrm{B}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{TeO}_{2}$. The spectrum of the lithium glass consists of a few components at 455,610 , 665,720 , and $780 \mathrm{~cm}^{-1}$. Here the $780 \mathrm{~cm}^{-1}$ band corresponds to the $790 \mathrm{~cm}^{-1}$ band for $\mathrm{Li}_{2} \mathrm{TeO}_{3}$ shown in Fig. 1. The boron glass has similar components at $457,610,665,725$ and $772 \mathrm{~cm}^{-1}$ as well as a weak band at $850 \mathrm{~cm}^{-1}$. According to Sekiya et al. [15] paratellurite and tellurite crystals have strong peaks in the vicinity of $650 \mathrm{~cm}^{-1}$ with another few strong ones near $200 \mathrm{~cm}^{-1}$ as well as weak peaks in


Figure 5 Deconvolution of the Raman spectrum for $\mathrm{Li}_{2} \mathrm{O} \cdot 4 \mathrm{TeO}_{2}$ glass (a) and $\mathrm{B}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{TeO}_{2}$ glass (b).
the range $350-800 \mathrm{~cm}^{-1}$. We hence attribute the $665 \mathrm{~cm}^{-1}$ component in Fig. 5a and b to TBP units. The 720 and $780 \mathrm{~cm}^{-1}$ component bands for the lithium glasses are due to the TP units of $\mathrm{O}_{1 / 2}$ $\mathrm{Te}(=\mathrm{O}) \mathrm{O}^{-}$[3] or $\mathrm{O}_{2 / 2} \mathrm{Te}-\mathrm{O}^{-}$[8] configurations because their relative intensity increases with $x$ as indicated in Fig. 2. It is surprising, however, that two component peaks have been deconvoluted at 716 and $773 \mathrm{~cm}^{-1}$ from the Raman spectrum of pure $\mathrm{TeO}_{2}$ glass [15], which correspond to the component at 725 and $772 \mathrm{~cm}^{-1}$ for $\mathrm{B}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{TeO}_{2}$ glass. These peaks should accordingly be assigned to TBP units [15] although they have already been assigned to the $\mathrm{TeO}_{3}^{2-}$ units in Fig. $1\left(\mathrm{Li}_{2} \mathrm{TeO}_{3}\right)$. It is thus very confusing that the TBP units in $\mathrm{TeO}_{2}$ glass show Raman bands similar in position to the TP units. We can discriminate the assignments only by the change of the band intensity due to composition. That is, a systematic variation of the ratios $I(720) / I(665)$ and $I(780) / I(665)$ will be noticed as the fraction of TP units varies with composition; they will increase when the TP units increase, or they will not change when the coordination state of Te atoms remains constant.

As discussed above, the ratios of the peak intensity $I(720) / I(665)$ and $I(780) / I(665)$ can be used as a parameter representing the fraction of TP units in the glasses. Then, the deconvolution is carried out for all the glasses. The boron glasses yield bands near 440, $610,665,720$ and $780 \mathrm{~cm}^{-1}$ while the indium glasses near $455,610,665,720$ and $780 \mathrm{~cm}^{-1}$. A weak band observed at $850 \mathrm{~cm}^{-1}$ for the boron glasses may be
related to a $\mathrm{Te}-\mathrm{O}-\mathrm{B}$ mode. The blue shift of the peak near $730 \mathrm{~cm}^{-1}$ observed in Figs 2 and 4 is then ascribed to the growth of the two components near 720 and $780 \mathrm{~cm}^{-1}$. Incidentally, borate groups with one or two $\mathrm{BO}_{4}$ units cause a very sharp Raman band near $770 \mathrm{~cm}^{-1}$ [13] (spectrum in Fig. 1b). However, the $780 \mathrm{~cm}^{-1}$ band deconvoluted for the present boron glasses is not ascribed to the borate groups. This will be discussed in Section 4.2. The intensity ratios have been plotted in Fig. 6 as a function of $x /$ $(1-x)$. Fig. 6 illustrates that those for the lithium and indium glasses increase linearly with $x /(1-x)$, whereas those for the boron glasses are almost independent of it. The lines are drawn according to least-squares fitting for the ratio $I(720) / I(665)$, and the slopes and $y$-cut values for both ratios are tabulated in Table I. The $y$-cut values are almost independent of the second oxide; about 0.5 and 0.4 for $I(720) / I(665)$ and $I(780) / I(665)$, respectively. By taking experimental uncertainty for the deconvolution into account, we regard that the slopes for the indium glasses are three times as large as those for the lithium glasses, whereas those for the boron glasses are null. It follows that each oxygen introduced by $\mathrm{In}_{2} \mathrm{O}_{3}$ and $\mathrm{Li}_{2} \mathrm{O}$ yields


Figure 6 Linear relations between the ratios of the Raman band intensities versus $x /(1-x)$ for the glasses of composition $x \mathrm{M}_{m} \mathrm{O}_{n}$. $(1-x) \mathrm{TeO}_{2}(\mathrm{M}=\mathrm{Li}$, In and B$)$. The lines represent least-squares fitting for the ratio $I(720) / I(665)$.

TABLE I Linear relations between the ratios of the Raman band intensities versus $x /(1-x)$ for the glasses of compositions $x \mathrm{M}_{m} \mathrm{O}_{n} \cdot(1-x) \mathrm{TeO}_{2}(\mathrm{M}=\mathrm{Li}$, In and B$)$

|  | $I(720) / I(665)$ |  | $I(780) / I(665)$ |  |
| :--- | :--- | :--- | :---: | :---: |
|  | Slope | $y$-cut | Slope | $y$-cut |
| $\mathrm{M}_{m} \mathrm{O}_{n}$ | 2.5 | 0.47 | 2.6 | 0.23 |
| $\mathrm{Li}_{2} \mathrm{O}$ | 7.2 | 0.53 | 6.4 | 0.44 |
| $\mathrm{ln}_{2} \mathrm{O}_{3}$ | 0.2 | 0.36 | -0.1 | 0.39 |
| $\mathrm{~B}_{2} \mathrm{O}_{3}$ |  |  |  |  |

almost the same amount of TP units. On this basis we conclude that indium oxide behaves as a networkmodifying oxide in the indium glasses like $\mathrm{Li}_{2} \mathrm{O}$ in the lithium glasses. Moreover, not only the coincidence of the $y$-cut values (i.e. the ratios extrapolated to pure $\mathrm{TeO}_{2}$ glass) of the three series of glasses but the nonzero values of them indicate that the TBP units in these glasses take configuration similar to that in pure $\mathrm{TeO}_{2}$ glass.

### 4.3. Structure models of glasses in the system $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{TeO}_{2}$

A Raman band near $770 \mathrm{~cm}^{-1}$ for borate glass has been assigned to borate groups involving one or two $\mathrm{BO}_{4}$ units [13]. Then one may assign the $780 \mathrm{~cm}^{-1}$ component in Fig. 6 to such groups since the difference of $10 \mathrm{~cm}^{-1}$ in band position is within the experimental uncertainty. If this assignment were true, the relative intensity of the Raman bands $I(780) / I(665)$ would change in accordance with the change in the fraction of the $\mathrm{BO}_{4}$ units. Fig. 3a reveals that the $930 \mathrm{~cm}^{-1}$ band assigned to the $\mathrm{BO}_{4}$ units decreases relative to the 1350 and $1240 \mathrm{~cm}^{-1}$ bands due to the $\mathrm{BO}_{3}$ units as the boron oxide content, $x$, increases. This obviously indicates the decrease in the fraction of the $\mathrm{BO}_{4}$ units, and is in accordance with the results of an NMR study by Göring et al. [11]. However, the ratio remains constant for the boron glasses in Fig. 6. Furthermore, FWHM of the $780 \mathrm{~cm}^{-1}$ component in the range $600-800 \mathrm{~cm}^{-1}$ is about $60 \mathrm{~cm}^{-1}$, whereas FWHM of the band due to the borate groups is about $20 \mathrm{~cm}^{-1}$ in the spectrum of Fig. 1b, $1 / 3$ as wide as the deconvoluted $780 \mathrm{~cm}^{-1}$ component. The $780 \mathrm{~cm}^{-1}$ band is therefore due to a $\mathrm{Te}-\mathrm{O}$ mode. Moreover, the deconvolution could not yield a band near $800 \mathrm{~cm}^{-1}$ assignable to boroxol rings. From these results we have concluded the absence of any borate groups in the present glasses. It follows that the boron atoms are distributed as discrete $\mathrm{BO}_{3}$ and $\mathrm{BO}_{4}$ units.
A negative charge on a $\mathrm{BO}_{4}$ unit can be balanced by either some structure groups or positively charged units. One of the latter units probable in the present glass is the $\mathrm{TeO}_{3 / 2}^{+}$unit in the limiting case of an intermediate $\mathrm{TeO}_{3}^{\delta}+\ldots \mathrm{O}^{\delta-}$ configuration. This positively charged unit would have a $\mathrm{C}_{3 \mathrm{v}}$ symmetry and give very strong Raman bands similar to those of the $\mathrm{TeO}_{3}^{2-}$ units in the spectrum of Fig. 1a, and those bands would decrease with increase in the boron oxide content. The present results described in $\S 4.1$ show that such is not the case.

With the intermediate configuration of $\mathrm{TeO}_{4 / 2}$ units the fourth oxygen atom is more basic than the other three and will be a target of an electrophilic attach of a boron atom as represented in Equation 4. Here the boron atom is four-coordinated while the TBP configuration is conserved.

$$
\mathrm{TeO}_{4 / 2}+\mathrm{BO}_{3 / 2} \rightarrow \mathrm{TeO}_{3 / 2}^{\delta} \ldots{ }^{\delta}-\mathrm{O}-\mathrm{BO}_{3 / 2}(4)
$$

However, the left-hand side of Equation 4 needs $\mathrm{O}_{1 / 2}$ for completion of the equation. Since no free oxygen atoms like those of alkali oxides are available in the
present system, the oxygen connecting the Te and B atoms in Equation 4 must be shared by another network-forming cation. That is, it is inevitable to assume three-coordinated oxygens within the constraints that TBP configuration is to be held for Te , no non-bridging bonds are allowed, and a fraction of B atoms are four-coordinated. The three-coordinated oxide ions have been established in several tellurite crystals like $\mathrm{CuTeO}_{3}[22]$ or $\mathrm{Te}_{4} \mathrm{O}_{5}\left(\mathrm{PO}_{4}\right)_{2}$ [23]. Two possible groups involving such oxygens are:

$$
\begin{array}{ll}
\mathrm{O}_{3 / 2} \mathrm{BO}^{*}\left(-\mathrm{TeO}_{3 / 2}\right)_{2} & \text { (group I) } \\
\mathrm{O}_{3 / 2} \mathrm{TeO}^{*}\left(-\mathrm{BO}_{2 / 2}\right)\left(-\mathrm{BO}_{3 / 2}\right) & \text { (group II) }
\end{array}
$$

Here, the oxygen with an asterisk combines two Te atoms and one $B$ in group $I$, and two $B$ atoms with one Te in group II. A greater positive charge may lie on the Te atom in group II because the Te atom in group II is connected to two borate units while the two Te atoms in group I share one negative charge on the $\mathrm{BO}_{4}$ unit. Three-coordinated boron atoms are much more electrophilic due to open $2 p_{z}$ orbitals than In or Te. They will attack a more basic oxygen, which might be the fourth one at a longer distance from Te. That oxygen accordingly behaves like the one in alkali or alkaline earth oxides. The role of indium oxide as a network modifier is then ascribed to its lower acidity or electronegativity [24].

## 5. Summary

Raman spectra of $x \mathrm{M}_{2} \mathrm{O}_{3}(\mathrm{M}=\mathrm{In}, \mathrm{B}) \cdot(1-x) \mathrm{TeO}_{2}$ glasses have been deconvoluted into component peaks. From the reference spectra of lithium tellurite glasses the 720 and $780 \mathrm{~cm}^{-1}$ bands are attributed to the formation of $\mathrm{TeO}_{3}$ units, and $665 \mathrm{~cm}^{-1}$ band to $\mathrm{TeO}_{4}$ ones. The intensity ratios of $I(720) / I(665)$ and $I(780) / I(665)$ for $x \ln _{2} \mathrm{O}_{3} \cdot(1-x) \mathrm{TeO}_{2}$ glasses linearly increase with increasing $\mathrm{In}_{2} \mathrm{O}_{3}$ content, and the slopes due to least-squares fitting are almost three times as large as those of $x \mathrm{Li}_{2} \mathrm{O} \cdot(1-x) \mathrm{TeO}_{2}$ glasses. It is concluded, therefore, that $\mathrm{In}_{2} \mathrm{O}_{3}$ behaves as a net-work-modifying oxide in tellurite glass like $\mathrm{Li}_{2} \mathrm{O}$.

The intensity of an infrared peak of $x \mathrm{~B}_{2} \mathrm{O}_{3}$. $(1-x) \mathrm{TeO}_{2}$ glasses at $930 \mathrm{~cm}^{-1}$ decreases slightly with increase in $x$ relative to $1350 \mathrm{~cm}^{-1}$ and $1240 \mathrm{~cm}^{-1}$ bands. This confirmed the presence of $\mathrm{BO}_{4}$ units and their variation with composition, whereas borate rings are not formed in the present glasses. The intensity ratios of the Raman bands $I(720) / I(665)$ and $I(780) / I(665)$ for $x \mathrm{~B}_{2} \mathrm{O}_{3} \cdot(1-x) \mathrm{TeO}_{2}$ glasses are independent of $x$, and the profile of Raman spectra is similar to that of $\mathrm{TeO}_{2}$ glass. Thus the absence of $\mathrm{TeO}_{3}$ units is concluded. From consideration of $\mathrm{TeO}_{4}$ units in an intermediate configuration $\mathrm{TeO}_{3}^{\delta+} \ldots$ ${ }^{\delta-} \mathrm{O}$, two groups involving a three-coordinated oxide ion, $\mathrm{O}_{3 / 2} \mathrm{TeO}^{*}\left(-\mathrm{BO}_{2 / 2}\right)\left(\mathrm{BO}_{3 / 2}\right)$ and $\mathrm{O}_{3 / 2} \mathrm{BO}^{*}$ $\left(\mathrm{TeO}_{3 / 2}\right)_{2}$, have been derived.

## References

1. E.F.LAMBSON, G. A. SAUNDERS, B. BRIDGE and R.A. EL-MALLAWANY, J. Non-Cryst. Solids 69 (1984) 117.
2. N. MOCHIDA and K. TAKAHASHI, Yogyo-Kyokai-Shi 86 (1978) 317.
3. T. YOKO, K. KAMIYA, K. TANAKA, H. YAMADA and S. SAKKA, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97 (1989) 289.
4. M. ARNAUDOV, V. DIMITROV, Y. DIMITRIEV and L. MARKOVA, Mater. Res. Bull. 17 (1982) 1121.
5. M. IMAOKA and T. YAMASAKI, Yogyo-Kyokai-Shi 76 (1968) 160.
6. H. NASU, O. MATSUSITA, K. KAMIYA, H. KOBAYASHI and K. KUBODERA, J. Non-Cryst. Solids 124 (1990) 275.
7. J. E. HUHEEY, "Inorganic chemistry", 3rd Edn (Harper and Row, New York, 1983) Ch. 5.
8. K. SUZUKI, J. Non-Cryst. Solids 95/96 (1987) 15.
9. Y. DIMITRIEV, V. DIMITROV and M. ARNAUDOV, $J$. Mater. Sci. 18 (1983) 1353.
10. M. DIMITROVA-PANKOVA, Y. DIMITROV, M. ARNAUDOV and V. DIMITROV, Phys. Chem. Glasses 30 (1989) 260.
11. R. GÖRING, H. BÜRGER, H. NASS and B. SCHNABEL, Physica Status Solidi (a) 68 (1981) k29.
12. Y.KANEKO, H. NAKAMURA, M. YAMANE,K. MIZOGUCHI and Y. SUGINOHARA, Yogyo-Kyokai-Shi 91 (1983) 321.
13. W. L. KONIJNENDIJK and J. M. STEVELS, J. Non-Cryst. Solids 18 (1975) 30.
14. A. BHARGAVA, R L. SNYDER and R. A. CONDRATE, Sr. Mater. Res. Bull. 22 (1987) 1603.
15. T. SEKIYA, N. MOCHIDA, J. OHTSUKA and M. TONOKAWA, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97 (1989) 1435.
16. O. LINDQVIST, W. MARK and J. MORET, Acta Crystallogr. B31 (1975) 1255.
17. R. MASSE, J. C. GUITEL and I. TORDJMAN, Mater. Res. Bull. 15 (1980) 431
18. H. MEYER, Z. Kristallogr. 124 (1967) 228.
19. O. LINDQVIST, Acta Chem. Scand. 22 (1968) 977
20. B. BUSS and B. KREBS, Inorg. Chem. 10 (1971) 2795.
21. B. MYSEN, W. LARRY, W. FINGER, O. VIRGO and F. A SEIFERT, Amer. Mineral. 67 (1982) 686.
22. G. MENORAH and J. GARY, Acta Crystallogr. B27 (1972) 602.
23. N. MOCHIDA, T. SEKIYA, J. OHTSUKA and TONOKA WA, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 96 (1988) 973.
24. J. E. HUHEEY, "Inorganic chemistry", 3rd Edn (Harper and Row, New York, 1983) Ch. 3.

Received 18 March and accepted 1 July 1991

